Appropriate Follow Up in Newborns with CHD

Department of Medical and Surgical Neonatology – DNMC

Neurodevelopmental Abnormalities and Congenital Heart Disease: Insights into Altered Brain Maturation

Introduction

Incidence CHD: 6-8 /1000 live births (1% of live babies in the USA)

Most frequent congenital malformation in childhood

1/3 CHD present genetic disorder (trisomy 21, 22q11microdeletion,

CHARGE)

♦ ≅ 50% CHD require immediate surgical intervention

80%-90% survival rates even for complex CHD

♦ Good cardiac outcome → more adults are alive now with CHD

CHD are particularly vulneable for subsequent *neurodevelopmental*

impairment → 50%

CHD and Brain Injury

The exact mechanism responsible for brain injury in CHD is not yet fully understood

Abnormal Cerebral Development

Miller et al. N Engl J Med 2007 MJ Mebius et al. Pediatric July 2017 B Latal. Clin Perinatol 43 (2016) NHP Claessens et al. Neuroimage:Clinical 21 (2018)

CHD and Brain Injury

Reduction in total brain volume → Smaller head circumferences (at least 10% in HLHS/ToF)

White Matter → puntate lesions (PVL, stroke) early microstructural abnormalities

Reduction of 20% cerebellar volume (SVP/TGA)

S Pevandi et al. Neuroimage 185 (2019) NHP Claessens et al. Neuroimage:Clinical 21 (2018) MJ Mebius et al. Pediatric July 2017

Neurodevelopmental Outcomes in Children With Congenital Heart Disease: Evaluation and Management

A Scientific Statement From the American Heart Association

This statement has been approved by the American Academy of Pediatrics.

Complexity of Congenital Heart Disease

BS Marino at al. DOI: 10.1161/CIR.0b013e318265ee8a

Neurodevelopmental Outcomes of the Child with Congenital Heart Disease

B Latal. Clin Perinatol 43 (2016)

OSPEDALE PEDIATRICO

Neurodevelopmental Outcomes of the Child with Congenital Heart Disease

B Latal. Clin Perinatol 43 (2016)

Bambino Gesi

OSPEDALE PEDIATRICO

Congenital Heart Disease and Neurodevelopment: Clinical Manifestations, Genetics, Mechanisms, and Implications

Neurodevelopmental outcome

Lower IQ (>10 points in cyanotic CHD)

Motor deficits 20-50%(cyanotic and acyanotic CHD): HLHS -2SD at 1 year fine and gross motor skills at 18 months and 5 years

Deficits visual-spatial/visual-motor integration (TGA school-age)

Language: speech delay of 2-4 months apraxia (ToF) poor language (cyanotic CHD)

Behavioural comorbidities: autism spectrum disorder ADHD (cyanotic CHD) somatization and aggressive behaviour depression/anxiety

SN Nattel et al. Canadian J of Cardiology 33 (201

Appropriate Follow Up in CHD

- Cardiological assessment
- Nutritional assessment
- Respiratory assessment
- Neurocognitive and neuromotor outcome

Appropriate Follow up in CHD

In specialized and expert centers

Developmental Neonatologist/Pediatrician

- Cardiologist
- Pediatric Nurse
- Neurologist
- Neuropsycologist
- Physiotherapist and Speech Therapist

Neurodevelopmental Outcomes of the Child with Congenital Heart Disease

Table 1 Overview of major outcome categories in the largest at-risk population						
	HIE	Very Preterms	CHD			
Prevalence	1-6/1000	10/1000	6/1000			
Cerebral palsy	30% TH: 20%	5%-10%	2%			
IQ <70	30%	10%–20%	10%-20%			
Mild deficits	~ 50 %	~50%	~30%-50%			

Abbreviations: HIE, hypoxic-ischemic encephalopathy; TH, therapeutic hypothermia.

B Latal. Clin Perinatol 43 (2016)

- 1. Dedicated
- 2. Multidisciplinary
- 3. <u>Stable team</u> → continuity of care
- 4. Counseling and care for child and parents
- 5. Life long follow up
- 6. Research projects and clinical-scientific collaborations

CHD Follow Up OPBG

NEONATOLOGIST

CARDIOLOGIST

GASTROENTEROLOGIST PNEUMOLOGIST GENETICIAN RADIOLOGIST NEUROLOGIST NEUROPSYCOLOGIST PHYSIOTHERAPIST

FU Time Points OPBG

- 1. One week after discharge from hospital
- 2. Three months
- 3. Six months
- 4. Nine months (if necessary)
- 5. <u>Twelve months</u>

DNMC

>1 YEAR -> CARDIOLOGIST FU PROGRAM DMCCP

1.1.1

Post Discharge Visit

✓ Feeding

- Water and caloric intake
- device: PEG, NGT
- Gastroenterological and auxological assessment (statural/weight growth)

✓ Therapy

- ✓ Vaccinations/ RSV prophylaxis
- ✓ Family care
- ✓ Check of the contacts with attending pediatrician
- ✓ cardiological and cardiac surgery program
- ✓ Follow up program

CHD FU DNMC OPBG

OUTCOME	3 mos	6 mos	9 mos	12 mos	18 mos Outpatient clinic DNMC	24 mos Outpatient clinic DNMC	4→12 yrs Outpatient clinic DNMC
Auxological	+ Blood sampling	+ Boold sampling	+	+	+	+	+
Respiratory	PFR	PFR		PFR			
Cardiac	+	+	+	+	+ DH DMCCP	+ DH DMCCP	+ DH DMCCP
Genetic	+			+			
Ultrasound	+	+	+	+			
Visual				+			
Audiological		+		+			
Neuromotor Hammersmith exam	+	+	+	+	+	+	Neurologist
Physiotherapist	+	+		+	+ DH DMCCP	+ DH DMCCP	+ DH DMCCP
Neurodevelopmental		+ BAYLEY III	+	+ BAYLEY III	+ BAYLEY III	+ BAYLEY III	+ DH DMCCP
Family care	+	+	+	+	+	+	+
Neuroimmaging				+			

OUTCOME CHD FU DNMC Bayley III at 12 mos

FU AT 12 MOS (n)	80/2yrs
EG (w)	37,7 (33-40)
PN (g)	2839 (900-3850)
DP (%)	81% (65/80)
Genetic abnormalities (n)	3
Stay at hospital (dd)	33 (7-120)
Surgery (n)	2 (1-3)
Cognitive	98,2
Speech (RC+EC)	97,3
RC	9,42
EC	9,76
Motor	85,7
Fine motor	8,86
Gross motor	6,86

PRENATAL COUNSELING

Child

Provide adeguate information on the desease and the clinical and surgery course

Establish a good ralationship with the parents

Psycologist \rightarrow Evaluation of the state of anxiety

Provide an optimal managment during pregnancy and delivery

Prenatal diagnosis → earlier use of PGE → less microstructural abnormalities of WM (Peyvandi et al. JAMA Pediatr 2016)

NEURONICU 4 DOMAINS

Development of a NeuroNICU with a Broader Focus on All Newborns at Risk of Brain Injury: The First 2 Years

The mortality rate was 11% for our NeuroNICU population compared with 6% for the general NICU population during the same time period. The mortality rate was twofold higher in the subset of patients with a primary medical concern as compared with that of patients with a primary neurologic diagnosis (14 vs. 5%; p < 0.01). Deaths in the NeuroNICU were due to cyanotic congenital heart defects (37%), extreme prematurity (23%), and HIE (7%). The mortality rate for moderate to severe HIE was 8%.

Development of a NeuroNICU with a Broader Focus on All Newborns at Risk of Brain Injury: The First 2 Years

Primary diagnosis	n (%)	Diagnosis	Monitoring	Neurology
Neurologic	205 (37.5)			consult
Seizure	57 (10.4)	HIE/cooling	aEEG, cEEG, and NIRS	Yes
HIE/cooling	50 (9.2)	Seizures	aEEG and cEEG	Yes
Neurologic abnormalities without specific diagnosis	40 (7.3)	ECMO/pre-ECMO	NIRS and consider aEEG	As needed
CNS anomalies	24 (4.4)	Grade III/IV or hydrocephalus	aEEG	Yes
Grade III or IV IVH or hydrocephalus	13 (2.4)	Critical/unstable	NIRS and consider aEEG	As needed
Meningitis	11 (2)			/ 10 1100 404
Neural tube defects	8 (1.5)	Preemie \leq 28 wk	NIRS	As needed
Stroke	2 (0.4)	CNS anomalies	cEEG and/or aEEG	Yes
Medical	341 (62.5)	Metabolic disease	cEEG and/or aEEG	As needed
Cyanotic CHD	162 (29.7)	Cyanotic CHD	NIRS	As needed
Prematurity, gestational age \leq 28 wk	100 (18.3)	CNS infection	cEEG and/or aEEG	Yes
Cardiorespiratory instability	55 (10.1)	Symptomatic PDA	NIRS	As needed
Metabolic disease	13 (2.4)	ALTE/BRUE	aEEG	As needed
ECMO/pre-ECMO 11 (2)		Hyperbilirubinemia	NIRS and	As needed
Total	546 (100)	> 20 or hemolytic process	consider allG	

francesca.campi@opbg.net

Bambino Gesù

TAKE HOME MESSAGES

- ➢ Neonates and infants with CHD are at substantial risk of negative neurodevelopmental and neurobehavioral outcome → dedicated and specific FU is mandatory
- FU should be provided <u>untill school-age and ideally untill adolescence</u>
- Family care is very important in order to support parents from prenatal counseling to post discharge FU
- Strict neonatal monitoring of the neurological state of the brain is indicated pre and post surgery period (<u>cerebral MRI, NeuroNICU</u>)
- "…Information on timing of brain dysmaturation and acquired brain injury in CHD can be used in the development of strategies to optimize neurodevelopment…allopurinol, erythropoietin,melatonin…and may reduce damage induced by reoxygenation and reperfusion in the brain"

francesca.campi@opbg.net